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The method of moments and the method of least squares is applied to electron scattering on a 
simple model potential. Some general problems connected with treatment of scattering problems by 
the method of moments and the method of least squares are discussed. The calculations give an example 
of the "random sampling type" error estimates discussed in previous papers of the series, and present 
a possible way of optimizing nonlinear parameters in the framework of the method of moments and 
the method of least squares. 

Die Momentenmethode und die Methode der kleinsten Quadrate wird auf die Elektronenstreuung 
an einem einfachen Modellpotential angewandt. Einige allgemeine Probleme bei der Anwendung 
dieser beiden Methoden auf Streuprobleme wurden diskutiert. Die Berechnungen geben ein Beispiel 
der Fehlerabsch~itzung vom ,,Stichproben-Typ", der in vorhergehenden Artikeln dieser Serie unter- 
sucht wurde; sic stellen eine M6glichkeit der Optimierung nicht-linearer Parameter bei den genannten 
zwei Methoden dar. 

La m6thode des moments et la m6thode des moindres carr~s sont appliqu6es/t l'6tude de la diffusion 
61ectronique sur un potentiel mod61e simple. Discussion de certains probl6mes g6n6raux li6s ~ l'emploi 
de ces m~thodes/t r6tude de la diffusion. Les calculs donnet un exemple de l'estimation d'erreur par 
6chantillonage discut6e dans les articles pr6c6dents, et pr6sentent une m6thode pour optimiser des 
param+tres non lin6aires dans le cadre des m6thodes des moments et des moindres carr6s. 

I. Introduction 

Scattering and  bound-s ta te  problems have m a n y  c o m m o n  features and  
moment - type  methods  appear  to be well suited for solving them. Nevertheless 
the differences between the two types of problems make  it necessary to discuss 
the t rea tment  of scattering problems in some detail 1. 

Let H be the H a m i l t o n i a n  opera tor  of a molecular  system and ~p(x) an eigen- 
funct ion of H be longing  to the eigenvalue E, x denot ing  a point  of the configu- 
ra t ional  space 

(H - E) ~p(x) = 0 .  (1) 

If tp(x) describes a scattering state, its asymptot ic  behaviour  is plane-wave like 
in certain directions of the conf igurat ional  space. 

Let q~(x, ~) be a var ia t ional  wave funct ion depending  on the var ia t ional  
parameters  a={cq,  c~2,...,~,} and  let Wo(X), wl(x) , . . . ,w,(x)  . . . .  be a set of 
l inearly independen t  funct ions to be referred to as weight functions. 

a The previous papers of this series [1] will be referred to as I, II and III. 
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Let us consider the moments 

mi(~ , ~)  = ( wi(x) l n - 81 (p(x , ct)) (2) 

of (H - ~)  q)(x, ~), 8 denoting approximation to E. 
The method of moments determines the values of the variational parameters 

and 8 from the requirements 
(w~ lH-  r ~0> = 0 (3) 

with i = 0, 1 .... , n, or, if the value of 8 is prescribed (this may be often the case 
in scattering problems) then with i=  1, 2,..., n. Although one has considerable 
freedom in the choice of the weight functions, in the case of bound-state problems 
the set w o ~ ~0; wi ~ aq~/~i (4) 

appears to be one of the best ones and in the previous papers of the series in 
practice always this approach has been considered. The remaining freedom in the 
choice of the weight functions can efficiently be used to reduce difficulties of 
integration. 

In scattering problems, however, it appears advantageous to consider slightly 
different possibilities. 

As ~o has a plane-wave like asymptotic behaviour in certain directions, in the 
case of weight functions of the form (4) the integrals (2) involve divergent terms. 
Even if the sum of these divergent terms is finite, for interacting many-particle 
systems (in particular without geometrical symmetry), the calculation of the 
integrals may require inconvenient cut-off and/or limiting processes. Consequently 
it appears advantageous to require that the weight functions should be 
quadratically integrable. In the following quadratically integrable weight functions 
will be considered. 

In the case of quadratically integrable weight functions there exits some 
danger that the weight functions will insufficiently scan the regions far from the 
scattering center. The application of the method of moments may also result 
in spurious singularities in the phase shifts similar to those discussed by Nesbet [-2] 
in connection with the Harris approach [3]. Although there are possibilities in 
the framework of the method of moments to avoid these difficulties (consider 
the stability tests to be discussed below) but it may be advantageous to avoid 
them by choosing more weight functions than variational parameters in ~o. This 
means that the variational parameters may be determined by the method of 
least squares from the equation 

K>n 
"~ = Z [c i (wi(x)  l H  - ~1 (p(x, ~)> ] 2 --- m i n ,  (5) 

i=o  

where the weight functions wi and the trial function ~p are to be subjected to 
convenient normalization conditions (the c:s denote non-zero weight factors 2' a). 
For potential scattering the normalization conditions will be fixed in Section 3. 

2 Although the ci's may be included in the normalization factors of the weight functions it can 
have advantages to write them out explicity. E.g. one possible way of carrying out the stability tests 
to be discussed below is to vary the c~'s. 

3 It has been shown in I that Eq. (5) is essentially a mathematically convenient approximation 
to the equation proposed by Preuss I-4]. 
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Obviously the well-known possibilities provided by the method of moments for 
the reduction of difficulties of integration are not lost by using the method of 
least squares. 

Alternative moment-type approaches to scattering problems have also been 
considered by Harris [3]. A similar approach has been applied by Ladfinyi to 
the Bethe-Salpeter equations [-3]. A detailed analysis of scattering methods has 
recently been given by Nesbet [2]. 

2. The Accuracy of the Results 

Evidently one single calculation can hardly give any information about the 
accuracy of the obtained wave function ~p. In order to obtain an estimate of the 
error in ~p or rather of the error in some physical quantity calculated from ~p 
(say, the error in a matrix element of the form (cp[LIcp)) a systematical series 
of calculations must be carried out. In such a series, if possible, both the weight 
functions and the kind and number of parameters in (p must be changed. In 
addition, these changes must be such that they can considerably influence q0 in 
those regions of the configurational space which are important for the value of 
the physical property under consideration 4. In this case it has a low probability 
that in every approximation the error in the physical property will be approxi- 
mately the same both in magnitude and in sign. Thus the oscillations of the 
physical property will give an estimate of its error in the sense of mathematical 
statistics. The reliability of this estimate rapidly increases with the increase of 
the number of different calculations 5. 

Such stability tests are certainly more tiresome than the calculation of one 
single approximate wave function. Nevertheless if complicated systems are in- 
vestigated which can not be easily subjected to accurate measurement (scattering 
state is a good example) and thus semiempirical error estimates are impossible 
it appears improbable that any other error estimate will be simpler than such 
stability tests. In any case the stability tests give a deep insight into the reliability 
of the approximation, 

In practical calculations it may obviously turn out that somewhat simpler 
tests of the accuracy of ~p will work. E. g. it can be expected that the average of 
the overlap integrals between different approximations to ~p may give a good 
estimate of the "overall" stability and thus the "overall" accuracy of ~0. In any 
case, such error estimates must always be handled with care. 

The above considerations have an interesting consequence. Although both 
the method of moments and the method of least squares are able to determine 
nonlinear parameters, their application is evidently considerably simpler if only 
linear parameters are optimized. The task of optimizing nonlinear parameters 
can, however, often be reduced to the task of optimizing linear ones if we regard 
as the "best" values of the nonlinear parameters those which ensure the maximum 
stability of the wave function against the introduction of further linear parameters. 

4 Qualitatively speaking the changes must be able to influence ~p in those regions where IL~I is 
large. 

5 It may be instructive to compare these considerations with the idea of "guided approximations" 
(Preuss, Schwartz, Hirschfelder, Epstein, Coulson, Hall, Szondy and others). References are given 
in I. 
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In this case the optimization of the nonlinear parameters can be combined with 
the stability test 6. 

Within the framework of the method of least squares the condition 

0X(c0/~ = 0 (6) 

(~ nonlinear parameter) may lead to a reasonable choice of the nonlinear para- 
meters if the use of the corresponding basis set results in a satisfactory stability 
of the approximate solutions. 

If many nonlinear parameters are to be optimized, this must in general be 
done also in this case by relaxation methods or other methods for seeking extrema. 

3. The Results of  the Test Calculations 

Potential scattering on a simple model potential (Nesbet [2]) has been in- 
vestigated. The Schr~dinger equation to be solved for the scattered wave with 
angular momentum l has the form 

1 1 d2(rlpz(r)) l ( l +  1) 
- 2 r dr 2 + 2r ~ lpl(r)-  e-rqol(r ) = E~pl(r ) . (7) 

The variational wave function has been taken in the form 

~0(x, ~)= ~ ~iq~,(x), (8) 
i=l  

where 
q~l (x) = sin (kr)/(kr) (1 - exp ( -  ?)2 r)) z , (9) 

q)2 (x) = cos(kr) / (kr )  (1 - e x p ( -  72 r)) l+ 1, (10) 

q)i(X)=r l+i-3 exp(--71r ) for i > 3 ,  (11) 

and k = ~ / f E .  (12) 

The weight functions have been chosen as 

wi(r) = ~ r i-1 e x p ( -  fir) (i = 1, 2 . . . . .  K ) .  (13) 

The wave function (8) behaves correctly both at r - - 0  and r = oo. For  l - - 0  
it can, for good values of ;q and 72, be expected to be a very good trial function. 
However, for l > 0 it is less suitable for approximating to the exact solution of 
(7) as this would require Bessel-type functions instead of the harmonical ones 7. 
Thus our trial function provides an example for all the interesting cases: a very 
good trial function gradually changing into a bad trial function as l increases. 
The numerical results dearly indicate this change. 

The wave function has been normalized according to 

~2 + ~2 = 1, (14) 

6 It should be noted that it is not always possible to decide uniquely from data obtained by 
stability test which value of a nonlinear parameter is the "best" one. This means, however, that simply 
the answer is not unique and we can choose practically any value within some interval. The results 
presented in Table 2 give a good example of this effect. 

7 Naturally for very high values of n our trial function tends to the exact solution. 

13 Theoret. chim. Acta (Bed.) Vol. 21 
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i.e. the electron fluxus at r = ~ has been fixed. Requirement (5) subject to the 
"normalization condition" (14) yields the secular equation 

with 

A l l - 2  A12 A13 ... A1, 

A21 A22 - , ~  A23 .. .  A2n 

A31 A32 A33 .. .  A3n = o (15)  

K 
Aij= ~ @~(x)lH--Elwh(x))c*ch(Wh(X)iH--Elqgj(x)). (16) 

h=l 

The secular equation (15) and the corresponding set of homogeneous linear 
equations determining the ~i's have been solved by a Gauss-Jordan type elimi- 
nation in which the first two columns and rows were not allowed to appear as 
pivotal Columns and rows, respectively. 

The results given in Table 1 have all been obtained with trial functions with 
71 = 72 --7 and weight functions with fl = 1.0, and c i = 1.0. 5 different approximati- 
ons have been calculated for every value of l, k and ~ in which 9 involved 4, 6, 
8, 10 and 12 terms (n = 4, 6, 8, 10 and 12). These approximations will be referred 
to as the 1 st, ..., 5 th. In calculations with the method of moments (MM) the 
number of weight functions w h has to be fixed by K = n - 1 ;  the least-squares 
(LS) approximations included in Table 1 have been computed by choosing 
K = n + 2 .  

A high number of calculations not included in Table 1 has been carried out 
covering wide ranges of different parameters without considerably changing the 
overall picture. 

The values 2 i included in Table 1 are defined in Eq. (5), the subscript referring 
to the i th approximation. The values Sf2 included in Table 1 are defined by 

i drr2 q~(i),(r) qg(J)(r) 2 
SiJ= R R (17) 

d r r E I~o(1)(r)[ 2, ~ drr 2 i~0~j~(r)l 2 
o o 

the superscripts i and j again refer to the corresponding approximation. Thus 
the values Sii present an example for an "overall" (and rather sensitive s' 9) stability 
test. The upper limit R of the integrals has been chosen in such a way that it 
should include regions both in the neighbourhood and far from the scattering 
center. (The results included in Table 1 have been calculated with R = 39.6). 

The quantities Sae and $5~ included in Table 1 give the overlap between the 
wave functions of the 3rd and 5th approximation and the exact wave functions 
obtained by a numerical integration of (7). 

a The phase shifts appear in general less characteristic of the "overall" accuracy of the wave 
functions, as they depend only on the values cq and ~2. 

9 For higher values of k the approximations are slightly better than for the k-values given in 
Table 1. 
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Table 1. Values of the quantities ).i and Si,i+l 

? 21 $12 22 S2a 2a $34 24 $45 25 Sae Sse 

MM 

1=0 

k=0.2 

LS 

/ = 0  

k=0.2  

MM 

/ = 0  

k=0.5 

LS 

/ = 0  

k=0.5 

MM 

l = 0  

k =  1.0 

LS 

l = 0  

k =  1.0 

MM 

l = l  

k=0.2  

LS 

/ = 1  

k=0.2  

MM 

l = l  

k=0,5 

4.00 0 0.9976 0 0.9998 0 0.9988 0 0.9534 0 0.9999 0.9449 
2.00 0 0.9999 0 0.9999 0 1.0000 0 1.0000 0 1.0000 1.00130 
1.00 0 0.9995 0 0.9999 0 0.9999 0 1.0000 0 0.9999 1.0000 
0.50 0 0.8284 0 0.6900 0 0.9161 0 0.3455 0 0.9290 0.3430 
0.25 0 0.0791 0 0.4884 0 0.8340 0 0.9240 0 0.1773 0,0013 

4.00 21o -2  0.9986 3 i o - 5  0.9996 21o-7  
2.00 31o-5  0.9999 51o-7  0.9999 11o-9  

0.9920 11o-8 0.9158 l l o - 1 0  0.9999 0.8916 
1.0000 71o- 13 1.13000 l l o -  16 1.0000 1.0000 

1.00 21o -4  0.9998 91o-100.9999 21o-10  1.0000 61o-13 1.0000 11o-15 1.0000 1,0000 
0,50 51o-3  0.9808 21o-5  0.9487 41o-8  0.9897 21o-12 0.9838 11o-12 0.9841 0.9943 
0,25 81o-3  0.2005 51o-6  0.5417 51o-9  0.8371 21o-12 0.8197 61o-15 0.1409 0.0002 

4,00 0 0.9998 0 0.9973 0 0.9953 0 0.9897 0 0.9976 0.9821 
2.00 0 0.9992 0 0.9999 0 1.0000 0 1.0000 0 1.0000 1.0000 
1.00 0 0.9985 0 0.9999 0 0.9999 0 1.0000 0 0,9999 1.0000 
0.50 0 0.7653 0 0.8650 0 0.9842 0 0.9317 0 0.9881 0.9322 
0.25 0 0.0289 0 0.3984 0 0.6752 0 0.8284 0 0.0223 0.0358 

4.00 21o-4  0.9994 51o-5  0.9905 91o-7  0.9842 41o-9  0.9819 61o-13 0.9909 0.9941 
2.00 31o-4  0.9995 41o-7  0.9999 l i o - 1 0  1.0000 31o-13 1.0000 9 i o - 1 8  1.13000 1.0000 
1.00 91o-5  0.9998 31o-9  1.0000 9 i o - l l  1.0000 21o-13 1.0000 41o-16  1.0000 1.0000 
0.50 81o-4  0.9752 2 i o - 5  0.9782 21o-8  0.9967 41o-12  0.9990 71o-13 0.9972 0.9993 
0.25 21o -4  0.2067 2 i o - 4  0.3855 51o-7  0,6228 71o-9  0.6514 3 i o - l l  0.0636 0.1566 

4.00 0 0.9946 0 0.9990 0 0.9979 0 0.9905 0 0.9997 0.9966 
2.00 0 0.9993 0 0.9999 0 0.9999 0 1.0000 0 0.9999 1.0000 
1.00 0 0.9996 0 0.9999 0 0.9999 0 1.0000 0 0.9999 1.00t30 
0.50 0 0.9936 0 0.9606 0 0.9796 0 0.9334 0 0.9910 0.9159 
0.25 0 0.8685 0 0.0323 0 0.6849 0 0.8905 0 0.0086 0.0089 

4.00 91o -4  0.9961 21o -6  0.9967 7 i o - 8  0.9953 7 1 o - l l  0.9608 21o-12 0.9981 0.9798 
2.00 11o-4  0.9999 41o -7  0.9999 61o-10  0.9999 31o-13 1.0000 71o-17 0.9999 1.0000 
1.00 61o-5  0.9989 61o -9  0.9999 31o-10 0.9999 71o-14  1.0000 l l o - 1 6  0.9999 1.0000 
0.50 41o -4  0.9980 21o-5  0.9959 21o-7  0.9955 41o-10  0.9974 41o-12 0.9946 0,9979 
0.25 21o-3  0.8935 8xo-6  0,0075 41o -6  0.6571 21o-8  0.8752 8 i o -  11 0.1004 0.0064 

2.00 0 0.9155 0 0.9451 0 0.9720 0 0.9909 0 0,9052 0.9928 
1.00 0 0.8782 0 0.9638 0 0,9955 0 0.9999 0 0.9887 0.9970 
0.50 0 0.8867 0 0.9669 0 0.9802 0 0.9636 0 0.9566 0.9925 
0.40 0 0,5878 0 0.2267 0 0.7170 0 0.0545 0 0.0465 0.5823 
0.30 0 0.0001 0 0.4551 0 0.8402 0 0.9673 0 0,1436 0.0441 
0.20 0 0.0631 0 0.7936 0 0.9022 0 0.9743 0 0.0934 0.0061 

2.00 5 i o - 2  0.9182 31o-3  0.9528 21o -4  0.9722 71o-6  0.9745 3io - 7 0.9448 0.9859 
1.00 31o-3  0.9105 21o-5  0.9790 9 1 o - 8  0.9985 2 1 o - l l  0.9999 91o-12 0.9945 0.9975 
0.50 31o-6  0.9580 21o-7  0.9970 l l o - 9  0.9960 11o-12 0.9976 21o-14 0.9890 0.9999 
0.40 21o-5  0.9492 l i o - 6  0.8950 41o -9  0.9645 41o-12  0.9493 l i o - 1 3  0.8151 0.9640 
0.30 41o-5  0.4082 41o -6  0.3257 71o-10 0.8541 61o-13 0.8252 41o-15 0.0095 0.1127 
0.20 81o-6  0.0869 21o-7  0.8239 5 1 o - l l  0.8901 l l o - 1 4  0.7777 31o-17 0.0519 0.0134 

4.00 0 0.9326 0 0.9870 0 0.2346 0 0,2859 0 0.9818 0.0385 
2.00 0 0.9791 0 0.9987 0 0.9962 0 0.9999 0 0.9885 0,9974 
1.00 0 0.9983 0 0.9964 0 0.9994 0 0.9998 0 0.9966 0,9993 
0.50 0 0.8242 0 0.9628 0 -0.9751 0 0,9864 0 0.9726 0,9894 
0.25 0 0.0213 0 0.5797 0 0.7315 0 0.9214 0 0.0054 0.0997 

13" 



182 K. Lad~inyi, V. Lengyel, and T. Szondy: 

Table 1 (continued) 

7 21 $12 22 S2a 23 Ss4 24 $45 25 $3~ Ss, 

LS 

l = l  

k=0.5 

MM 

l = l  

k= 1.0 

LS 

l = l  

k= 1.0 

MM 

/=2  

k=0.2 

LS 

l=2 

k=0.2 

MM 

l=2  

k=0.5 

LS 

l--2 

k=0.5 

MM 

l=2  

k--- 1.0 

LS 

l=2  

k= 1.0 

4.00 41o-2 0.9456 11o--3 0.9175 21o-4 0.0191 61o-5 0.0212 21o-6 0.9208 0.0056 
2.00 51o--3 0.9967 61o-5 0.9941 91o--6 0.9975 3 io -9  0.9947 21o--8 0.9930 0.9938 
1.00 11o-4 0.9928 31o-6 0.9993 21o-8 0.9989 9 1 o - l l  0.9999 51o-12 0.9965 0.9994 
0.50 71o-4 0.9364 11o-6 0.9938 61o-9 
0.25 11o-4 0.0062 31o-5 0.5341 61o-8 

4.00 0 0.9937 0 0.9961 0 
2.00 0 0.9921 0 0.9978 0 
1.00 0 0.9758 0 0.9992 0 
0.50 0 0.8958 0 0.8346 0 
0.25 0 0.0104 0 0.4527 0 

4.00 71o-4 0.9850 31o-5 0.9805 41o-6 
2.00 41o-4 0.9955 91o--6 0.9975 31o-8 

0.9952 21o-12 0.9995 11o-13 0.9933 0.9996 
0.6588 21o-9 0.7693 91o-12 0.0029 0.1168 

0.8707 0 0.7068 0 0.9898 0.7544 
0.9996 0 0.9999 0 0.9950 0.9979 
0.9997 0 0.9999 0 0.9963 0.9985 
0.7550 0 0.4972 0 0.9667 0.8197 
0.3824 0 0.8916 0 0.0010 0.0000 

0.8285 11o-8 0.0485 21o-8 0.9754 0.1104 
0.9990 61o-10 0.9995 21o-10 0.9948 0.9983 

1.00 51o-5 0.9930 31o-6 0.9976 61o--9 0.9996 4 1 o - l l  0.9998 ,41o-13 0.9955 0.9988 
0.50 41o-4 0.9860 41o-5 0.9345 11o-8 
0.25 11o-3 0.8545 31o-5 0.0660 11o-6 

0.9245 11o-9 0.9613 11o- 11 0.9657 0.9970 
0.6699 11o-10 0.8562 51o-12 0.00130 0.0219 

2.00 0 0.7574 0 0.8543 0 0.9011 0 0.9588 0 0.4685 0.8457 
1.00 0 0.5938 0 0.6459 0 0.9034 0 0.9851 0 0.7920 0.9969 
0.50 0 0.7565 0 0.1634 0 0.8788 0 0.9997 0 0.9066 0.9953 
0.40 0 0.7554 0 0.8032 0 0.1064 0 0.0735 0 0.7749 0.9695 
0.30 0 0.8788 0 0.0039 0 0.9233 0 0.9304 0 0.5535 0.8208 
0.20 0 0.7239 0 0.0247 0 0.9645 0 0.8259 0 0.3134 0.1147 

2.00 21o-1 0.7914 61o-3 0.8684 31o-4 0.8936 21o-5 0.8451 21o-6 0.5982 0.8700 
1.00 31o-2 0.6094 11o-4 0.8355 41o-7 0.9509 21o-9 0.9913 8io-12 0.8995 0.9987 
0.50 71o-4 0.4259 l l o - 6  0.3039 9 1 o - l l  0.9963 21o-14 0.9989 41o-15 0.9970 0.9997 
0.40 91o-5 0.0194 61o-8 0.4271 4 1 o - l l  0.9948 31o-13 0.9607 11o-14 0.9748 0.9998 
0.30 61o--6 0.6821 21o-8 0.1459 2 1 o - l l  0.8346 21o-14 0.1695 21o-16 0.4516 0.9918 
0.20 31o-7 0.7042 l l o - 9  0.5908 41o-13 0.8853 91o-16 0.7535 21o-17 0.2648 0.2214 

4.00 0 0.5771 0 0.5726 0 
2.00 0 0.4730 0 0.9681 0 
1.00 0 0.3591 0 0.9840 0 
0.50 0 0.8184 0 0.7657 0 
0.25 0 0.1619 0 0.7381 0 

4.00 31o-1 0.5386 31o-2 0.2266 11o-3 
2.00 61o-2 0.7082 51o-4 0.9961 11o-5 
1.00 41o-3 0.9433 21o-6 0.9803 31o-9 

0.1955 0 0.3956 0 0.6765 0.0112 
0.9930 0 0.9875 0 0.9262 0.9779 
0.9992 0 0.9976 0 0.9772 0.9930 
0.9657 0 0.6470 0 0.9500 0.7591 
0.7963 0 0.9058 0 0.0202 0.0028 

0.0095 51o - 5 0.0562 2ao - 4 0.3601 0.0009 
0.9727 91o-7 0.9855 21o-8 0.9257 0.9855 
0.9992 51o-10 0.9970 21o-12 0.9821 0.9960 

0.50 31o-5 0.9916 31o-7 0.9643 91o-10 0,9856 41o-12 0.9919 31o-13 0.9747 0.9940 
0.25 81o-5 0.1509 71o-7 0.7483 31o-9 0.7406 9 1 o - l l  0.9094 51o-12 0.1254 0.0047 

4.00 0 0.9324 0 0.9226 0 0.8334 0 0.0394 0 0.9237 0.1926 
2.00 0 0.9630 0 0.9966 0 0.9955 0 0.9967 0 0.9502 0.9862 
1.00 0 0.9934 0 0.9998 0 0.9940 0 0.9997 0 0.9614 0.9876 
0.50 0 0.0682 0 0.3223 0 0.0220 0 0.0749 0 0.6406 0.2214 
0.25 0 0.5288 0 0.5360 0 0.9211 0 0.8699 0 0.0018 0.0116 

4.00 91o-~3 0.9648 51o-4 0.8960 91o-7 
2.00 31o-4 0.9648 11o-6 0.9897 51o-7 
1.00 61o-4 0.9855 9 1 o - 8  0.9974 21o-8 
0.50 51o-3 0.5578 91o-5 0,5385 61o-8 
0.25 11o-3 0.2483 21o-5 0.8088 21o--6 

0.3780 91o-7 0.0396 21o-8 0.9150 0.0828 
0.9976 21o-8 0.9975 21o-10 0.9671 0.9870 
0.9970 4 1 o - l l  0.9994 71o-12 0.9730 0.9920 
0.3390 81o-10 0.4531 11o- 1l 0.7176 0.8623 
0.6371 31o-9 0.7383 61o-10 0.0019 0.0396 



The Method of Moments. IV 

Table 1 (continued) 

183 

~1 S12 ~2 $23 ~3 $34 24 $45 25 S3e SSe 

MM 

/=3 

k=0.2 

LS 

/=3 

k=0.2 

MM 

/=3 

k=0.5 

LS 

/=3 

k=0.5 

MM 

/=3 

k= 1.0 

LS 

/=3 

k= 1.0 

1.00 0 0.9030 0 0.8980 0 0.2998 0 0,6892 0 0.8101 0.8457 
0.50 0 0.8629 0 0.9766 0 0.1641 0 0,8297 0 0.7434 0.9467 
0.40 0 0.9318 0 0.0236 0 0.2569 0 0.9901 0 0.0700 0.9667 
0.30 0 0.2113 0 0.1284 0 0.9353 0 0,9219 0 0.7497 0.9999 
0.25 0 0.0190 0 0.5451 0 0.9635 0 0.0575 0 0.8326 0.5374 
0.20 0 0.4717 0 0.7612 0 0.9684 0 0.0298 0 0.0765 0.9178 

1.00 81o-2 0.7800 91o-4 0.0888 41o-6 0.5609 l l o - 9  0.9455 91o-10 0.1956 0.9452 
0.50 31o-4 0.8800 21o-8 0.9249 l lo -10  0.2876 l lo -10  0.9295 31o-14 0,6563 0.9790 
0.40 31o-5 0.9541 21o-100.1091 81o- l l  0.6094 31o-14 0.9940 51o-16 0,4366 0.9848 
0.30 11o-6 0.0021 51o-100.2116 21o-13 0.9957 41o-14 0.9272 51o-16 0.9196 0.9999 
0.25 51o-8 0.2456 11o-9 0.9352 91o-13 0.8917 21o-15 0.9970 l lo-15  0.8786 0.9987 
0.20 l l o - 8  0.9945 51o-10 0.1613 91o-13 0.9867 31o-16 0.8976 21o-17 0.9509 0.8195 

4.00 0 0.2764 0 0.3168 0 0.0006 0 0.6555 0 0.2625 0.0218 
2.00 0 0.0784 0 0.6387 0 0.9938 0 0.9829 0 0.8225 0.9167 
1.00 0 0.2434 0 0.3485 0 0.8845 0 0.9860 0 0.7718 0.9391 
0.50 0 0.0863 0 0.3974 0 0.0008 0 0.5918 0 0.7628 0.0613 
0.25 0 0.3279 0 0.1687 0 0.9871 0 0.8728 0 0.0347 0.0893 

4.00 9to-1 0.2553 71o-2 0.0424 71o-3 0.0613 310-4 0.2315 21o-5 0.1484 0.0224 
2.00 31o-1 0.1148 11o-3 0.8665 41o-6 0.9943 91o-7 0.9417 31o-7 0.8642 0.9437 
1.00 41o-4 0.9665 31o-5 0.9542 31o-7 0.9631 21o-10 0.9969 41o-10 0.8894 0.9886 
0.50 41o-4 0.5910 71o-7 0.6253 l l o - 9  0.1961 9 i o - l l  0.0545 31o- l l  0.9303 0.2387 
0.25 81o-6 0.1652 91o-8 0.7793 41o-10 0.0732 l l o - l l  0.4113 31o-10 0.0336 0.1120 

4.00 0 0.2557 0 0.9521 0 0.7771 0 0.5364 0 0.7020 0.2979 
2.00 0 0.9489 0 0.9268 0 0.9768 0 0.9971 0 0.8309 0.9404 
1.00 0 0.4121 0 0.6843 0 0.9740 0 0.9912 0 0.8448 0.9688 
0.50 0 0.0979 0 0.1795 0 0.1812 0 0.7918 0 0.1643 0.0096 
0.25 0 0.5027 0 0.0497 0 0.9124 0 0.9164 0 0.0065 0.0143 

4.00 51o-2 0.6278 21o-4 0.7757 51o-5 0.6028 11o-6 0.0002 21o-7 0.6945 0.0960 
2.00 21o-4 0.9235 9~o-3 0.9718 11o-6 0.9874 11o-8 0.9871 l l o - 9  0.8485 0.9569 
1.00 41o-4 0.7855 21o-5 0.9529 91o-8 0.9816 51o-10 0.9964 l lo -10  0.8706 0.9671 
0.50 21o-2 0.0098 41o-5 0.4937 11o-7 0.1055 41o-9 0.6085 21o-9 0.5533 0.0456 
0.25 11o-3 0.4236 51o-6 0.8435 21o-6 0.6089 31o-9 0.0832 21o-9 0.0070 0.0158 

As noted  already, the quanti t ies  S u listed in Table  1 are fairly sensitive to 
the fine details of the approximate  wave function. As, in addit ion,  S~i is no t  the 
quant i ty  that  we directly optimize, it is no t  necessarily mono toneous ly  improved 
when the n u m b e r  of var ia t ional  parameters  is increased. Examples of this can be 
seen in Table  1, main ly  at 2; values lying very far from the opt imum.  Natura l ly  
the stability test indicates in these cases the inaccuracy of the result. 

In  Table  2 the averages of the S~,~+l-values are given as a funct ion of 7 for 
l = 1 and  k = 0.2, 0.5, 1.0. In  Table  3 phase shifts calculated for l = 0 presented. 

For  compar i son  also the exact phase shift values calculated from scattering 
ampl i tude  values publ ished by Morawi tz  [5] are included in Table  3. 
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Table 2. Averages of  the values Si, i+ t. S=  ~- ~ Si,i+t for l = 1 

i = l  

~, k=0.2 k=0.5 k=l .0  

MM 

LS 

4.00 0.5437 0.6100 0.8918 
3.50 0.5683 0.6582 0.8914 
2.50 0.9353 0.9861 0.9967 
2.00 0.9559 0.9935 0.9973 
1.50 0.9564 0.9969 0.9977 
1.00 0.9593 0.9989 0.9936 
0.75 0.9669 0.9951 0.9898 
0.50 0.9743 0.9371 0.7456 
0.25 0.6314 0.5635 0.4345 

4.00 0.3024 0.4758 0.7106 
3.50 0.3867 0.5141 0.8902 
2.50 0.7621 0.9664 0.9951 
2.00 0.9544 0.9957 0.9978 
1.50 0.9659 0.9981 0.9987 
1.00 0.9719 0.9977 0.9975 
0.75 0.9786 0.9953 0.9938 
0.50 0.9871 0.9812 0.9516 
0.25 0.5988 0.4921 0.6116 

Table 3. Phase shifts for  I = 0 and 7 = 1.5 

k Approximation 

1 2 3 4 5 

Exact. 

(Morawitz [5]) 

MM 0.1 -0.979045 -0.980476 -0.979939 -0.979876 -0.979873 -0.979879 
0.5 2 . 4 4 5 0 9 8  2.638331 2 .638680 2.638778 2.638771 2.638776 
0.9 1 .069617  1.108165 1.112643 1.113387 1.113431 1.113454 

LS 0.1 -0.980254 -0.980256 -0.979905 -0.979875 -0.979873 -0.979879 
0.5 2 . 5 3 4 9 8 5  2 .636095 2 .638749 2.638760 2.638768 2.638776 
0.9 1 .088185  1.110106 1.113012 1.113404 1.113448 1.113454 
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